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Antenna Materials

and Accessories


This chapter contains information on materials 
amateurs use to construct antennas—what types of material 
to look for in a particular application, tips on working with 
and using various materials. Chapter 21 contains 
information on where to purchase these materials. 

Basically, antennas for MF, HF, VHF and the lower 
UHF range consist simply of one or more conductors that 
radiate (or receive) electromagnetic waves. However, an 
antenna system must also include some means to support 
those conductors and maintain their relative positions— 
the boom for a Yagi antenna and the halyards for a wire 

dipole, for example. In this chapter we’ll look at materials 
for those applications, too. Structural supports such as 
towers, masts, poles, etc. are discussed in Chapter 22. 

There are two main types of material used for antenna 
conductors, wire and tubing. Wire antennas are generally 
simple and therefore easier to construct, although some 
arrays of wire elements can become rather complex. When 
tubing is required, aluminum tubing is used most often 
because of its light weight. Aluminum tubing is discussed 
in a subsequent section of this chapter. 

Wire Antennas

Although wire antennas are relatively simple, they can 

constitute a potential hazard unless properly constructed. 
Antennas should never be run under or over public utility 
(telephone or power) lines. Several amateurs have lost their 
lives by failing to observe this precaution. 

The National Electric Code® of the National Fire 
Protection Association contains a section on amateur stations 
in which a number of recommendations are made concern­
ing minimum size of antenna wire and the manner of 
bringing the transmission line into the station. Chapter 1 
contains more information about this code. The code in itself 
does not have the force of law, but it is frequently made a 
part of local building regulations, which are enforceable. 
The provisions of the code may also be written into, or 
referred to, in fire and liability insurance documents. 

The RF resistance of copper wire increases as the size 
of the wire decreases. However, in most types of antennas 
that are commonly constructed of wire (even quite small 
wire), the radiation resistance will be much higher than 
the RF resistance, and the efficiency of the antenna will 
still be adequate. Wire sizes as small as #30, or even 

smaller, have been used quite successfully in the 
construction of “invisible” antennas in areas where more 
conventional antennas cannot be erected. In most cases, 
the selection of wire for an antenna will be based primarily 
on the physical properties of the wire, since the suspension 
of wire from elevated supports places a strain on the wire. 

WIRE TYPES 
Wire having an enamel coating is preferable to bare 

wire, since the coating resists oxidation and corrosion. 
Several types of wire having this type of coating are 
available, depending on the strength needed. “Soft-drawn” 
or annealed copper wire is easiest to handle; unfortunately, 
it stretches considerably under stress. Soft-drawn wire 
should be avoided, except for applications where the wire 
will be under little or no tension, or where some change in 
length can be tolerated. (For example, the length of a 
horizontal antenna fed at the center with open-wire line is 
not critical, although a change in length may require some 
readjustment of coupling to the transmitter.) 

“Hard-drawn” copper wire or copper-clad steel wire 
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(also known as CopperweldTM) is harder to handle, because 
it has a tendency to spiral when it is unrolled. These types 
of wire are ideal for applications where significant stretch 
cannot be tolerated. Care should be exercised in using this 
wire to make sure that kinks do not develop—the wire will 
have a far greater tendency to break at a kink. After the 
coil has been unwound, suspend the wire a few feet above 
ground for a day or two before using it. The wire should 
not be recoiled before it is installed. 

Several factors influence the choice of wire type and 

size. Most important to consider are the length of the 
unsupported span, the amount of sag that can be tolerated, 
the stability of the supports under wind pressure, and 
whether or not an unsupported transmission line is to be 
suspended from the span. Table 1 shows the wire diam, 
current-carrying capacity and resistance of various sizes 
of copper wire. Table 2 shows the maximum rated working 
tensions of hard-drawn and copper-clad steel wire of 
various sizes. These two tables can be used to select the 
appropriate wire size for an antenna. 

Table 1 
Copper-Wire Table 

Turns 
Wire per Feet Ohms 
Size Dia Linear  per per 
AWG in Dia Inch Pound 1000 ft 
(B&S) Mils1 in mm Enamel Bare 25°C 

289.3 7.348 — 3.947 0.1264 
257.6 6.544 — 4.977 0.1593 
229.4 5.827 — 6.276 0.2009 
204.3 5.189 — 7.914 0.2533 
181.9 4.621 — 9.980 0.3195 
162.0 4.115 — 12.58 0.4028 
144.3 3.665 — 15.87 0.5080 
128.5 3.264 7.6 20.01 0.6405 
114.4 2.906 8.6 25.23 0.8077 
101.9 2.588 9.6 31.82 1.018 
90.7 2.305 10.7 40.12 1.284 
80.8 2.053 12.0 50.59 1.619 
72.0 1.828 13.5 63.80 2.042 
64.1 1.628 15.0 80.44 2.575 
57.1 1.450 16.8 101.4 3.247 
50.8 1.291 18.9 127.9 4.094 
45.3 1.150 21.2 161.3 5.163 
40.3 1.024 23.6 203.4 6.510 
35.9 0.912 26.4 256.5 8.210 
32.0 0.812 29.4 323.4 10.35 
28.5 0.723 33.1 407.8 13.05 
25.3 0.644 37.0 514.2 16.46 
22.6 0.573 41.3 648.4 20.76 
20.1 0.511 46.3 817.7 26.17 
17.9 0.455 51.7 1031 33.00 
15.9 0.405 58.0 1300 41.62 
14.2 0.361 64.9 1639 52.48 
12.6 0.321 72.7 2067 66.17 
11.3 0.286 81.6 2607 83.44 
10.0 0.255 90.5 3287 105.2 
8.9 0.227 101 4145 132.7 
8.0 0.202 113 5227 167.3 
7.1 0.180 127 6591 211.0 
6.3 0.160 143 8310 266.0 
5.6 0.143 158 10480 335 
5.0 0.127 175 13210 423 
4.5 0.113 198 16660 533 
4.0 0.101 224 21010 673 
3.5 0.090 248 26500 848 
3.1 0.080 282 33410 1070 

1A mil is 0.001 inch. 
2Max wire temp of 212° F and max ambient temp of 135° F. 
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Table 2 
Stressed Antenna Wire 
American Recommended Tension1 (pounds) Weight (pounds per 1000 feet) 
Wire Gauge Copper-clad Hard-drawn Copper-clad Hard-drawn 

steel2 copper steel2 copper 
4 495 214 115.8 126.0 
6 310 130 72.9 79.5 
8 195 84 45.5 50.0 

10 120 52 28.8 31.4 
12 75 32 18.1 19.8 
14 50 20 11.4 12.4 
16 31 13 7.1 7.8 
18 19 8 4.5 4.9 
20 12 5 2.8 3.1 
1Approximately one-tenth the breaking load. Might be increased 50% if end supports are firm and there is no danger of 

ice loading.
2Copperweld,TM 40% copper. 

Wire Tension 

If the tension on a wire can be adjusted to a known 
value, the expected sag of the wire (Fig 1) may be determined 
before installation using Table 2 and the nomograph of 
Fig 2. Even though there may be no convenient method to 
determine the tension in pounds, calculation of the expected 
sag for practicable working tensions is often desirable. If 
the calculated sag is greater than allowable it may be reduced 
by any one or a combination of the following: 

1) Providing additional supports, thereby decreasing the 
span 

2) Increasing the tension in the wire if less than 
recommended 

3) Decreasing the size of the wire 

Instructions for Using the Nomograph 
1)	 From Table 2, find the weight (pounds/1000 feet) for 

the particular wire size and material to be used. 
2)	 Draw a line from the value obtained above, plotted on 

the weight axis, to the desired span (feet) on the span 

Fig 1—The half span and sag of a long-wire antenna. 

axis, Fig 2. Note in Fig 1 that the span is one half the 
distance between the supports. 

3) Choose an operating tension level (in pounds) 
consistent with the values presented in Table 2 
(preferably less than the recommended wire tension). 

4)	 Draw a line from the tension value chosen (plotted on 
the tension axis) through the point where the work axis 
crosses the original line constructed in step 2, and 
continue this new line to the sag axis. 

5) Read the sag in feet on the sag axis. 

Example: 

Weight = 11 pounds/1000 feet

Span = 210 feet

Tension = 50 pounds

Answer: Sag = 4.7 feet


These calculations do not take into account the weight of 
a feed line supported by the antenna wire. 

Wire Splicing 
Wire antennas should preferably be made with 

unbroken lengths of wire. In instances where this is not 
feasible, wire sections should be spliced as shown in 
Fig 3. The enamel insulation should be removed for a 
distance of about 6 inches from the end of each section by 
scraping with a knife or rubbing with sandpaper until the 
copper underneath is bright. The turns of wire should be 
brought up tight around the standing part of the wire by 
twisting with broad-nose pliers. 

The crevices formed by the wire should be completely 
filled with rosin-core solder. An ordinary soldering iron or 
gun may not provide sufficient heat to melt solder outdoors; 
a propane torch is desirable. The joint should be heated 
sufficiently so the solder flows freely into the joint when the 
source of heat is removed momentarily. After the joint has 
cooled completely, it should be wiped clean with a cloth, and 
then sprayed generously with acrylic to prevent corrosion. 
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Fig 2—Nomograph for determining wire sag. (John 
Elengo, Jr, K1AFR) 

ANTENNA INSULATION 
To prevent loss of RF power, the antenna should be 

well insulated from ground, unless of course it is a shunt­
fed system. This is particularly important at the outer end 
or ends of wire antennas, since these points are always at a 
comparatively high RF potential. If an antenna is to be 
installed indoors (in an attic, for instance) the antenna may 
be suspended directly from the wood rafters without 
additional insulation, if the wood is permanently dry. Much 
greater care should be given to the selection of proper 
insulators when the antenna is located outside where it is 
exposed to wet weather. 

Insulator Leakage 
Antenna insulators should be made of material that 

will not absorb moisture. The best insulators for antenna 
use are made of glass or glazed porcelain. Depending on 
the type of material, plastic insulators may be suitable. The 
length of an insulator relative to its surface area is indicative 
of its comparative insulating ability. A long thin insulator 
will have less leakage than a short thick insulator. Some 
antenna insulators are deeply ribbed to increase the surface 
leakage path without increasing the physical length of the 

Fig 3—Correct method of splicing antenna wire. Solder 
should be flowed into the wraps after the connection is 
completed. After cooling, the joint should be sprayed 
with acrylic to prevent oxidation and corrosion. 

insulator. Shorter insulators can be used at low-potential 
points, such as at the center of a dipole. If such an antenna 
is to be fed with open-wire line and used on several bands, 
however, the center insulator should be the same as those 
used at the ends, because high RF potential may exist across 
the center insulator on some bands. 

Insulator Stress 
As with the antenna wire, the insulator must have 

sufficient physical strength to support the stress of the 
antenna without danger of breakage. Long elastic bands or 
lengths of nylon fishing line provide long leakage paths 
and make satisfactory insulators within their limits to resist 
mechanical strain. They are often used in antennas of the 
“invisible” type mentioned earlier. 

For low-power work with short antennas not subject 
to appreciable stress, almost any small glass or glazed­
porcelain insulator will do. Homemade insulators of Lucite 
rod or sheet will also be satisfactory. More care is required 
in the selection of insulators for longer spans and higher 
transmitter power. 

For a given material, the breaking tension of an insulator 
will be proportional to its cross-sectional area. It should be 
remembered, however, that the wire hole at the end of the 
insulator decreases the effective cross-sectional area. For this 
reason, insulators designed to carry heavy strains are fitted 
with heavy metal end caps, the eyes being formed in the 
metal cap, rather than in the insulating material itself. The 
following stress ratings of antenna insulators are typical: 

5/8 in. square by 4 in. long—400 lb

1 in. diameter by 7 or 12 in. long—800 lb

11/2 in. diameter by 8, 12 or 20 in. long, with special metal


end caps—5000 lb 

These are rated breaking tensions. The actual working 
tensions should be limited to not more than 25% of the 
breaking rating. 

The antenna wire should be attached to the insulators 
as shown in Fig 4. Care should be taken to avoid sharp 
angular bends in the wire when it is looped through the 
insulator eye. The loop should be generous enough in size 
that it will not bind the end of the insulator tightly. If the 
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length of the antenna is critical, the length should be 
measured to the outward end of the loop, where it passes 
through the eye of the insulator. The soldering should be 
done as described earlier for the wire splice. 

Strain Insulators 
Strain insulators have their holes at right angles, since 

they are designed to be connected as shown in Fig 5. It can 
be seen that this arrangement places the insulating material 
under compression, rather than tension. An insulator 
connected this way can withstand much greater stress. 
Furthermore, the wire will not collapse if the insulator 
breaks, since the two wire loops are inter-locked. Because 
the wire is wrapped around the insulator, however, the 
leakage path is reduced drastically, and the capacitance 
between the wire loops provides an additional leakage path. 
For this reason, the use of the strain insulator is usually 
confined to such applications as breaking up resonances 
in guy wires, where high levels of stress prevail, and where 
the RF insulation is of less importance. Such insulators 
might be suitable for use at low-potential points on an 

Fig 4—When fastening antenna wire to an insulator, do 
not make the wire loop too snug. After the connection 
is complete, flow solder into the turns. Then when the 
joint has cooled completely, spray it with acrylic. 

antenna, such as at the center of a dipole. These insulators 
may also be fastened in the conventional manner if the wire 
will not be under sufficient tension to break out the eyes. 

Insulators for Ribbon-Line Antennas 
Fig 6A shows the sketch of an insulator designed to 

be used at the ends of a folded dipole or a multiple dipole 
made of ribbon line. It should be made approximately as 
shown, out of Lucite or bakelite material about 1/4 inch 
thick. The advantage of this arrangement is that the strain 
of the antenna is shared by the conductors and the plastic 
webbing of the ribbon, which adds considerable strength. 
After soldering, the screw should be sprayed with acrylic. 

Fig 6B shows a similar arrangement for suspending 
one dipole from another in a stagger-tuned dipole system. 
If better insulation is desired, these insulators can be wired 
to a conventional insulator. 

PULLEYS AND HALYARDS 
Pulleys and halyards commonly used to raise and 

lower a wire antenna must also be capable of taking the 

Fig 5—Conventional manner of fastening wire to a 
strain insulator. This method decreases the leakage 
path and increases capacitance, as discussed in the 
text. 

Fig 6—At A, an insulator for the ends of folded dipoles, or multiple dipoles made of 300-ohm ribbon. At B, a method 
of suspending one ribbon dipole from another in a multiband dipole system. 
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same strain as the antenna wire and insulators.
Unfortunately, little specific information on the stress
ratings of most pulleys is available. Several types of pulleys
are readily available at almost any hardware store. Among
these are small galvanized pulleys designed for awnings
and several styles and sizes of clothesline pulleys. Heavier
and stronger pulleys are those used in marine work. The
factors that determine how much stress a pulley will handle
include the diameter of the shaft, how securely the shaft is
fitted into the sheath and the size and material of the frame.

Another important factor to be considered in the
selection of a pulley is its ability to resist corrosion.
Galvanized awning pulleys are probably the most
susceptible to corrosion. While the frame or sheath usually
stands up well, these pulleys usually fail at the shaft. The
shaft rusts out, allowing the grooved wheel to break away
under tension.

Most good-quality clothesline pulleys are made of
alloys which do not corrode readily. Since they are designed
to carry at least 50 feet of line loaded with wet clothing in
stiff winds, they should be adequate for normal spans of
100 to 150 feet between stable supports. One type of
clothesline pulley has a 4-inch diameter plastic wheel with
a ¼-inch shaft running in bronze bearings. The sheath is
made of cast or forged corrosion-proof alloy. Some look-
alike low-cost pulleys of this type have an aluminum shaft
with no bearings. For antenna work, these cheap pulleys

are of little long-term value.
Marine pulleys have good weather-resisting qualities,

since they are usually made of bronze, but they are
comparatively expensive and are not designed to carry
heavy loads. For extremely long spans, the wood-sheathed
pulleys used in “block and tackle” devices and for sail
hoisting should work well.

Halyards

Table 3 shows the recommended maximum tensions
for various sizes and types of line and rope suitable for
hoisting halyards. Probably the best type for general
amateur use for spans up to 150 or 200 feet is ¼-inch nylon
rope. Nylon is somewhat more expensive than ordinary
rope of the same size, but it weathers much better. Nylon
also has a certain amount of elasticity to accommodate
gusts of wind, and is particularly recommended for
antennas using trees as supports. A disadvantage of new
nylon rope is that it stretches by a significant percentage.
After an installation with new rope, it will be necessary to
repeatedly take up the slack created by stretching. This
process will continue over a period of several weeks, at
which time most of the stretching will have taken place.
Even a year after installation, however, some slack may
still arise from stretching.

Most types of synthetic rope are slippery, and some
types of knots ordinarily used for rope will not hold well.
Fig 7 shows a knot that should hold well, even in nylon
rope or plastic line.

For exceptionally long spans, stranded galvanized
steel sash cord makes a suitable support. Cable advertised
as “wire rope” usually does not weather well. A boat winch,
sold at marinas and at Sears, is a great convenience in
antenna hoisting (and usually a necessity with metal
halyards).

Table 3
Approximate Safe Working Tension for Various
Halyard Materials

Dia, Tension,
Material In. Lb

Manila hemp rope 1/4 120
3/8 270
1/2 530
5/8 800

Polypropylene rope 1/4 270
3/8 530
1/2 840

Nylon rope 1/4 300
3/8 660
1/2 1140

7×11 galvanized 1/16 30
 sash cord 1/8 125

3/16 250
1/4 450

High-strength stranded 1/8 400
 galvanized steel guy 3/16 700
 wire 1/4 1200

Rayon-filled plastic 7/32 60 to 70
 clothesline

Fig 7—This is one type of knot that will hold with
smooth rope, such as nylon. Shown at A, the knot for
splicing two ends. B shows the use of a similar knot in
forming a loop, as might be needed for attaching an
insulator to a halyard. Knot A is first formed loosely 10
or 12 in. from the end of the rope; then the end is
passed through the eye of the insulator and knot A.
Knot B is then formed and both knots pulled tight.
(Richard Carruthers, K7HDB)
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Antennas of Aluminum Tubing


Aluminum is a malleable, ductile metal with a mass 
density of 2.70 grams per cubic centimeter. The density of 
aluminum is approximately 35% that of iron and 30% that 
of copper. Aluminum can be polished to a high brightness, 
and it will retain this polish in dry air. In the presence of 
moisture, aluminum forms an oxide coating (Al2O3) that 
protects the metal from further corrosion. Direct contact 
with certain metals, however (especially ferrous metals 
such as iron or steel), in an outdoor environment can bring 
about galvanic corrosion of aluminum and its alloys. Some 
protective coating should be applied to any point of con­
tact between two dissimilar metals. Much of this informa­
tion about aluminum and aluminum tubing was prepared 
by Ralph Shaw, K5CAV. 

Aluminum is non-toxic; it is used in cooking utensils 
and to hold and cover “TV dinners” and other frozen foods, 
so it is certainly safe to work with. The ease with which it 
can be drilled or sawed makes it a pleasure to work with. 
Aluminum products lend themselves to many and varied 
applications. 

Aluminum alloys can be used to build amateur 
antennas, as well as for towers and supports. Light weight 
and high conductivity make aluminum ideal for these 
applications. Alloying lowers the conductivity ratings, but 
the tensile strength can be increased by alloying aluminum 
with one or more metals such as manganese, silicon, 
copper, magnesium or zinc. Cold rolling can be employed 
to further increase the strength. 

A four-digit system is used to identify aluminum 
alloys, such as 6061. Aluminum alloys starting with a 6 
contain di-magnesium silicide (Mg2Si). The second digit 
indicates modifications of the original alloy or impurity 
limits. The last two digits designate different aluminum 
alloys within the category indicated by the first digit. 

In the 6000 series, the 6061 and 6063 alloys are a 
commonly used for antenna applications. Both types have 
good resistance to corrosion and medium strength. A 
further designation like T-6 denotes thermal treatment (heat 
tempering). More information on the available aluminum 
alloys can be found in Table 4. 

SELECTING ALUMINUM TUBING 
Table 5 shows the standard sizes of aluminum tubing 

that are stocked by most aluminum suppliers or distributors 
in the United States and Canada. Note that all tubing comes 
in 12-foot lengths (local hardware stores sometimes stock 
6- and 8-foot lengths) and larger-diameter sizes may be 
available in lengths up to 24 feet. Note also that any 
diameter tubing will fit snugly into the next larger size, 
if the larger size has a 0.058-inch wall thickness. For 
example, 5/8-inch tubing has an outside diameter of 0.625 
inch. This will fit into 3/4-inch tubing with a 0.058-inch 
wall, which has an inside diameter of 0.634 inch. 

Table 4

Aluminum Numbers for Amateur Use


Common Alloy Numbers 
Type  Characteristic 
2024 Good formability, high strength 
5052 Excellent surface finish, excellent corrosion 

resistance, normally not heat treatable for 
high strength 

6061 Good machinability, good weldability 
6063 Good machinability, good weldability 
7075 Good formability, high strength 

Common Tempers 
Type Characteristics 
T0 Special soft condition 
T3 Hard 
T6 Hardest, possibly brittle 
TXXX Three digit tempers—usually specialized 

high strength heat treatments, similar to T6 

General Uses 
Type Uses 
2024-T3 Chassis boxes, antennas, anything that will 

be bent or 
7075-T3 Flexed repeatedly 
6061-T6 Tubing and pipe; angle channel and bar 

stock 
6063-T832 Tubing and pipe; angle channel and bar 

stock 

A clearance of 0.009 inch is just right for a slip fit or for 
slotting the tubing and then using hose clamps. Always 
get the next larger size and specify a 0.058-inch wall to 
obtain the 0.009-inch clearance. 

A little figuring with Table 5 will give you all the 
information you need to build a beam, including what the 
antenna will weigh. The 6061-T6 type of aluminum has a 
relatively high strength and has good workability. It is 
highly resistant to corrosion and will bend without taking 
a “set.” 

SOURCES FOR ALUMINUM 
Aluminum can be purchased new, and suppliers are 

listed in Chapter 21. But don’t overlook the local metal 
scrap yard. The price varies, but between 35 and 60 cents 
per pound is typical for scrap aluminum. Some aluminum 
items to look for include aluminum vaulting poles, tent 
poles, tubing and fittings from scrapped citizen’s band 
antennas, and aluminum angle stock. The scrap yard may 
even have a section or two of triangular aluminum tower. 

Aluminum vaulting poles are 12 or 14 feet long and 
range in diameter from 11/2  to 13/4  inches. These poles 
are suitable for the center-element sections of large 
14-MHz beams or as booms for smaller antennas. Tent 
poles range in length from 2½ to 4 feet. The tent poles are 
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Table 5

Aluminum Tubing Sizes

6061-T6 (61S-T6) Round Aluminum Tube In 12-Foot Lengths 

Wall Thickness Approximate Weight Wall Thickness Approximate Weight 
Tubing ID, Pounds Pounds Tubing ID, Pounds Pounds 
Diameter Inches Stubs Ga. Inches Per Foot Per Length Diameter Inches Stubs Ga. Inches Per Foot Per Length 
3/16 in. 0.035 (#20) 0.117 0.019 0.228 0.083 (#14) 0.834 0.281 3.372

0.049 (#18) 0.089 0.025 0.330 11/8 in. 0.035 (#20) 1.055 0.139 1.6681/4 in. 0.035 (#20) 0.180 0.027 0.324 0.058 (#17) 1.009 0.228 2.736
0.049 (#18) 0.152 0.036 0.432 11/4 in. 0.035 (#20) 1.180 0.155 1.860

0.058 (#17) 0.134 0.041 0.492 0.049 (#18) 1.152 0.210 2.520
5/16 in. 0.035 (#20) 0.242 0.036 0.432 0.058 (#17) 1.134 0.256 3.072

0.049 (#18) 0.214 0.047 0.564 0.065 (#16) 1.120 0.284 3.408

0.058 (#17) 0.196 0.055 0.660 0.083 (#14) 1.084 0.357 4.284
3/8 in. 0.035 (#20) 0.305 0.043 0.516 13/8 in. 0.035 (#20) 1.305 0.173 2.076

0.049 (#18) 0.277 0.060 0.720 0.058 (#17) 1.259 0.282 3.384

0.058 (#17) 0.259 0.068 0.816 11/2 in. 0.035 (#20) 1.430 0.180 2.160

0.065 (#16) 0.245 0.074 0.888 0.049 (#18) 1.402 0.260 3.120
7/16 in. 0.035 (#20) 0.367 0.051 0.612 0.058 (#17) 1.384 0.309 3.708
0.049 (#18) 0.339 0.070 0.840 0.065 (#16) 1.370 0.344 4.128
0.065 (#16) 0.307 0.089 1.068 0.083 (#14) 1.334 0.434 5.2081/2 in. 0.028 (#22) 0.444 0.049 0.588 *0.125 1/8 in. 1.250 0.630 7.416
0.035 (#20) 0.430 0.059 0.708 *0.250 1/4 in. 1.000 1.150 14.832
0.049 (#18) 0.402 0.082 0.984 15/8 in. 0.035 (#20) 1.555 0.206 2.472
0.058 (#17) 0.384 0.095 1.040 0.058 (#17) 1.509 0.336 4.032
0.065 (#16) 0.370 0.107 1.284 1¾ in. 0.058 (#17) 1.634 0.363 4.3565/8 in. 0.028 (#22) 0.569 0.061 0.732 0.083 (#14) 1.584 0.510 6.120
0.035 (#20) 0.555 0.075 0.900 17/8 in. 0.058 (#17) 1.759 0.389 4.668
0.049 (#18) 0.527 0.106 1.272 2 in. 0.049 (#18) 1.902 0.350 4.200
0.058 (#17) 0.509 0.121 1.452 0.065 (#16) 1.870 0.450 5.400
0.065 (#16) 0.495 0.137 1.644 0.083 (#14) 1.834 0.590 7.0803/4 in. 0.035 (#20) 0.680 0.091 1.092 *0.125 1/8 in. 1.750 0.870 9.960
0.049 (#18) 0.652 0.125 1.500 *0.250 1/4 in. 1.500 1.620 19.920
0.058 (#17) 0.634 0.148 1.776 21/4 in. 0.049 (#18) 2.152 0.398 4.776
0.065 (#16) 0.620 0.160 1.920 0.065 (#16) 2.120 0.520 6.240
0.083 (#14) 0.584 0.204 2.448 0.083 (#14) 2.084 0.660 7.9207/8 in.	 0.035 (#20) 0.805 0.108 1.308 21/2 in. 0.065 (#16) 2.370 0.587 7.044
0.049 (#18) 0.777 0.151 1.810 0.083 (#14) 2.334 0.740 8.880
0.058 (#17) 0.759 0.175 2.100 *0.125 1/8 in. 2.250 1.100 12.720
0.065 (#16) 0.745 0.199 2.399 *0.250 1/4 in. 2.000 2.080 25.440

1 in.	 0.035 (#20) 0.930 0.123 1.476 3 in. 0.065 (#16) 2.870 0.710 8.520
0.049 (#18) 0.902 0.170 2.040 *0.125 1/8 in. 2.700 1.330 15.600
0.058 (#17) 0.884 0.202 2.424 *0.250 ¼ in. 2.500 2.540 31.200
0.065 (#16) 0.870 0.220 2.640 *These sizes are extruded. All other sizes are drawn tubes. 

usually tapered; they can be split on the larger end and 
then mated with the smaller end of another pole of the same 
diameter. A small stainless-steel hose clamp (sometimes 
also available at scrap yards!) can be used to fasten the 
poles at this junction. A 14- or 21-MHz element can be 
constructed from several tent poles in this fashion. If a 
longer continuous piece of tubing is available, it can be 
used for the center section to decrease the number of 
junctions and clamps. 

Other aluminum scrap is sometimes available, such 
as US Army aluminum mast sections designated AB-85/ 
GRA-4 (J&H Smith Mfg). These are 3 foot sections with 
a 15/8 inch diameter. The ends are swaged so they can be 

assembled one into another. These are ideal for making a 
portable mast for a 144-MHz beam or for Field Day 
applications. 

CONSTRUCTION WITH ALUMINUM 
TUBING 

Most antennas built for frequencies of 14 MHz and 
above are made to be rotated. Constructing a rotatable 
antenna requires materials that are strong, lightweight and 
easy to obtain. The materials required to build a suitable 
antenna will vary, depending on many factors. Perhaps the 
most important factor that determines the type of hardware 
needed is the weather conditions normally encountered. 
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High winds usually don’t cause as much damage to an 
antenna as does ice, especially ice along with high winds. 
Aluminum element and boom sizes should be selected 
so the various sections of tubing will telescope to provide 
the necessary total length. 

The boom size for a rotatable Yagi or quad should be 
selected to provide stability to the entire system. The best 
diameter for the boom depends on several factors; most 
important are the element weight, number of elements and 
overall length. Tubing of 1-¼-inch diameter can easily 
support three-element 28-MHz arrays and perhaps a two­
element 21-MHz system. A 2-inch diameter boom will be 
adequate for larger 28-MHz antennas or for harsh weather 
conditions, and for antennas up to three elements on 
14 MHz or four elements on 21 MHz. It is not 
recommended that 2-inch diameter booms be made any 
longer than 24 feet unless additional support is given to 
reduce both vertical and horizontal bending forces. 
Suitable rein-forcement for a long 2-inch boom can consist 
of a truss or a truss and lateral support, as shown in Fig 8. 

A boom length of 24 feet is about the point where a 
3-inch diameter begins to be very worthwhile. This 
dimension provides a considerable improvement in overall 
mechanical stability as well as increased clamping surface 
area for element hardware. Clamping surface area is 
extremely important if heavy icing is common and rotation 
of elements around the boom is to be avoided. Pinning an 
element to the boom with a large bolt helps in this regard. 
On smaller diameter booms, however, the elements 
sometimes work loose and tend to elongate the pinning 
holes in both the element and the boom. After some time 
the elements shift their positions slightly (sometimes from 
day to day!) and give a rather ragged appearance to the 
system, even though this doesn’t generally harm the 

Fig 8—A long boom needs both vertical and horizontal 
support. The cross bar mounted above the boom can 
support a double truss to help keep the antenna in 
position. 

electrical performance. 
A 3-inch diameter boom with a wall thickness of 

0.065 inch is satisfactory for antennas up to about a five­
element, 14-MHz array that is spaced on a 40-foot long 
boom. A truss is recommended for any boom longer than 
24 feet. 

There is no RF voltage at the center of a parasitic 
element, so no insulation is required in mounting elements 
that are centered on the boom (driven elements excepted). 
This is true whether the boom is metal or a nonconducting 
material. Metal booms have a small “shortening effect” on 
elements that run through them. With materials sizes 
commonly employed, this is not more than one percent of 
the element length, and may not be noticeable in many 
applications. It is just perceptible with 1/2-inch tubing booms 
used on 432 MHz, for example. Design-formula lengths can 
be used as given, if the matching is adjusted in the frequency 
range one expects to use. The center frequency of an all­
metal array will tend to be 0.5 to 1 percent higher than a 
similar system built of wooden supporting members. 

Element Assembly 

While the maximum safe length of an antenna element 
depends to some extent on its diameter, the only laws that 
specify the minimum diameter of an element are the laws 
of nature. That is, the element must be rugged enough to 
survive whatever weather conditions it will encounter. 

Fig 9 shows tapered Yagi element designs that will 
survive winds in excess of 80 mi/h. With a 1/4-inch thick­
ness of radial ice, these designs will withstand winds up 
to approximately 60 mi/h. (Ice increases the wind area but 
does not increase the strength of the element.) More rugged 
designs are shown in Fig 10. With no ice loading, these 
elements will survive in 120-mi/h winds, and in winds 
exceeding 85 mi/h with 1/4 inch of radial ice. If you lose an 
antenna made with elements like these, you’ll have plenty 
of company among your neighbors with commercially 
made antennas! 

Figs 9 and 10 show only half elements. When the 
element is assembled, the largest size tubing for each 
element should be double the length shown in the drawing, 
with its center being the point of attachment to the boom. 
These designs are somewhat conservative, in that they are 
self-resonant slightly below the frequency indicated for 
each design. Telescoping the outside end sections to shorter 
lengths for resonance will increase the survival wind 
speeds. Conversely, lengthening the outside end sections 
will reduce the survival wind speeds. [See Bibliography 
listing for David Leeson (W6NL, ex-W6QHS) at the end 
of this chapter.] 

Fig 11 shows several methods of fastening antenna 
element sections together. The slot and hose clamp 
method shown in Fig 11A is probably the best for joints 
where adjustments are required. Generally, one adjustable 
joint per element half is sufficient to tune the antenna. 
Stainless-steel hose clamps (beware—some “stainless 
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Fig 9—Half-element designs for Yagi antennas. The 
other side of the element is identical, and the center 
section should be a single piece twice as long as the 
length shown here for the largest diameter section. Use 
0.058-in.-wall aluminum tubing throughout. Broken 
lines indicate double tubing thickness, where one tube 
is inserted into another. The overlap insertion depth 
into a tube two sizes larger, where shown, should be at 
least two inches. Maximum survival wind speeds 
without ice are shown adjacent to each design; values 
enclosed in parentheses are survival speeds for ¼ inch 
of radial ice. 

Fig 10—A more rugged 
schedule of taper 
proportions for Yagi half­
elements than Fig 9. See 
the Fig 9 caption for 
details. Table 5 gives 
details of aluminum tubing 
sizes. 
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Fig 11—Methods of connecting telescoping tubing 
sections to build beam elements. See text for a 
discussion of each method. 

steel” models do not have a stainless screw and will rust) 
are recommended for longest antenna life. Table 6 shows 
available hose-clamp sizes. 

Figs 11B, 11C and 11D show possible fastening 
methods for joints that do not require adjustment. At B, 
machine screws and nuts hold the elements in place. At C, 
sheet metal screws are used. At D, rivets secure the tubing. 
If the antenna is to be assembled permanently, rivets are 
the best choice. Once in place, they are permanent. They 
will never work free, regardless of vibration or wind. If 
aluminum rivets with aluminum mandrels are used, they 
will never rust. In addition, there is no danger of dissimilar­
metal corrosion with aluminum rivets and aluminum 
antenna elements. If the antenna is to be disassembled and 
moved periodically, either B or C will work. If machine 
screws are used, however, take all possible precautions to 
keep the nuts from vibrating free. Use lock washers, lock 
nuts and flexible sealant such as silicone bathtub sealant 
to keep the hardware in place. 

Very strong elements can be made by using a double 
thickness of tubing, made by telescoping one size inside 
another for the total length. This is usually done at the 
center of an element where more element strength is 
desired at at the boom support point, as in the 14-MHz 
element in Fig 10. Other materials can be used as well, 
such as wood dowels, fiberglass rods, and so forth. 

In each case where a smaller diameter length of 
tubing is telescoped inside a larger diameter one, it’s a 
good idea to coat the inside of the joint with Penetrox or 
a similar substance to ensure a good electrical bond. 
Antenna elements have a tendency to vibrate when they 
are mounted on a tower, and one way to dampen the 
vibrations is by running a piece of clothesline rope through 
the length of the element. Cap or tape the end of the element 
to secure the clothesline. If mechanical requirements 
dictate (a U-bolt going through the center of the element, 

Table 6 
Hose-Clamp Diameters 

Clamp Diameter (In.) 
Size No. Min Max 
06 7/16 7/8 

08 7/16 1 
10 1/2 11/8 

12 5/8 11/4 

16 3/4 11/2 

20 7/8 13/4 

24 11/8 2 
28 13/8 21/4 

32 15/8 21/2 

36 17/8 23/4 

40 21/8 3 
44 25/16 31/4 

48 25/8 31/2 

52 27/8 33/4 

56 31/8 4 
64 31/2 41/2 

72 4 5 
80 41/2 51/2 

88 51/8 6 
96 55/8 61/2 

104 61/8 7 

for instance), the clothesline may be cut into two pieces. 
Antennas for 50 MHz need not have elements larger 

than 1/2-inch diameter, although up to 1 inch is used 
occasionally. At 144 and 220 MHz the elements are usually 
1/8 to 1/4 inch in diameter. For 420 MHz, elements as small 
as 1/16 inch diameter work well, if made of stiff rod. 
Aluminum welding rod of 3/32 to 1/8 inch diameter is fine 
for 420-MHz arrays, and 1/8 inch or larger is good for the 
220-MHz band. Aluminum rod or hard-drawn wire works 
well at 144 MHz. 

Tubing sizes recommended in the paragraph above 
are usable with most formula dimensions for VHF/UHF 
antennas. Larger diameters broaden the frequency 
response; smaller ones sharpen it. Much smaller diameters 
than those recommended will require longer elements, 
especially in 50-MHz arrays. 

Element Taper and Electrical Length 

The builder should be aware of one important aspect 
of telescoping or tapered elements. When the element 
diameters are tapered, as shown in Figs 9 and 10, the 
electrical length is not the same as it would be for a 
cylindrical element of the same total length. Length 
corrections for tapered elements are discussed in Chapter 2. 
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Other Materials for Antenna Construction

Wood is very useful in antenna work. It is available 

in a great variety of shapes and sizes. Rug poles of wood 
or bamboo make fine booms. Bamboo is quite satisfactory 
for spreaders in quad antennas. 

Round wood stock (doweling) is found in many 
hardware stores in sizes suitable for small arrays. Wood is 
good for the framework of multibay arrays for the higher 
bands, as it keeps down the amount of metal in the active 
area of the array. Square or rectangular boom and frame 
materials can be cut to order in most lumber yards if they 
are not available from the racks in suitable sizes. 

Wood used for antenna construction should be well 
seasoned and free of knots or damage. Available materials 
vary, depending on local sources. Your lumber dealer can 
help you better than anyone else in choosing suitable 
materials. Joining wood members at right angles can be 
done with gusset plates, as shown in Fig 12. These can be 
made of thin outdoor-grade plywood or Masonite. Round 
materials can be handled in ways similar to those used with 
metal components, with U clamps and with other hardware. 

In the early days of Amateur Radio, hardwood was 
used as insulating material for antennas, such as at the 
center and ends of dipoles, or for the center insulator of 
a driven element made of tubing. Wood dowels cut to 
length were the most common source. To drive out 
moisture and prevent the subsequent absorption of 
moisture into the wood, it was treated before use by 
boiling it in paraffin. Of course today’s technology has 
produced superior materials for insulators in terms of both 
strength and insulating qualities. However, the technique 
is worth consideration in an emergency situation or if 
low cost is a prime requirement. “Baking” the wood in 
an oven for a short period at 200° F should drive out any 
moisture. Then treatment as described in the next 
paragraph should prevent moisture absorption. The use 
of wood insulators should be avoided at high-voltage 
points if high power is being used. 

All wood used in outdoor installations should be 
protected from the weather with varnish or paint. A good 
grade of marine spar varnish or polyurethane varnish will 
offer protection for years in mild climates, and one or 
more seasons in harsh climates. Epoxy-based paints also 
offer good protection. 

Plastics 

Plastic tubing and rods of various sizes are available 
from many building-supplies stores. The uses for the 
available plastic materials are limited only by your 
imagination. Some amateurs have built beam antennas 
for VHF using wire elements run inside thin PVC 
plumbing pipe. The pipe gives the elements a certain 
amount of physical strength. Other hams have built 
temporary antennas by wrapping plastic pipe with 
aluminum foil or other conductive material. Plastic 

Fig 12—Wood members can be joined at right angles 
using gusset plates. 

Fig 13—Plastic plumbing parts can be used as antenna 
center and end insulators. 

plumbing pipe fittings can also be used to enclose baluns 
and as the center insulator or end insulators of a dipole, 
as shown in Fig 13. Plastic or Teflon rod can be used as 
the core of a loading coil for a mobile antenna (Fig 14) 
but the material for this use should be selected carefully. 
Some plastics become quite warm in the presence of a 
strong RF field, and the loading-coil core might melt or 
catch fire! 

Fiberglass 

Fiberglass poles are the preferred material for 
spreaders for quad antennas. They are lightweight, they 
withstand harsh weather well, and their insulating 
qualities are excellent. One disadvantage of fiberglass 
poles is that they may be crushed rather easily. Fracturing 
occurs at the point where the pole is crushed, causing it 
to lose its strength. A crushed pole is next to worthless. 
Some amateurs have repaired crushed poles with 
fiberglass cloth and epoxy, but the original strength is 
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Fig 14—A mobile-antenna loading coil wound on a 
polystyrene rod. 

nearly impossible to regain. 
Fiberglass poles can also be used to construct other 

types of antennas. Examples are helically wound Yagi 
elements or verticals, where a wire is wound around the 
pole. 

CONCLUSION 
The antenna should be put together with good 

quality hardware. Stainless steel is best for long life. Rust 
will quickly attack plated steel hardware, making nuts 
difficult, if not impossible, to remove. If stainless-steel 
muffler clamps and hose clamps are not available, the next 
best thing is to have them plated. If you can’t have them 
plated, at least paint them with a good zinc-chromate 
primer and a finish coat or two. 

Galvanized steel generally has a longer life than 
plated steel, but this depends on the thickness of the 
galvanizing coat. Even so, in harsh climates rust will 
usually develop on galvanized fittings in a few years. For 
the ultimate in long-term protection, galvanized steel 
should be further protected with zinc-chromate primer and 
then paint or enamel before exposing it to the weather. 

Good quality hardware is expensive initially, but if 
you do it right the first time, you won’t have to take the 
antenna down in a few years and replace the hardware. 
When the time does come to repair or modify the antenna, 
nothing is more frustrating than fighting rusty hardware 
at the top of the tower. 

Basically any conductive material can be used as the 
radiating element of an antenna. Almost any insulating 
material can be used as an antenna insulator. The materials 
used for antenna construction are limited mainly by 
physical considerations (required strength and resistance 
to outdoor exposure) and by the availability of materials. 
Don’t be afraid to experiment with radiating materials and 
insulators. 
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