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Chapter 12 

Quad Arrays


Chapter 11, HF Yagi Arrays, discussed Yagi arrays 
as systems of approximately half-wave dipole elements 
that are coupled together mutually. You can also employ 
other kinds of elements using the same basic principles 
of analysis. For example, loops of various types may be 
combined into directive arrays. A popular type of para­
sitic array using loops is the quad antenna, in which loops 
having a perimeter of about one wavelength are used in 
much the same way as half-wave dipole elements in the 
Yagi antenna. 

Clarence Moore, W9LZX, created the quad antenna 
in the early 1940s while he was at the Missionary Radio 
Station HCJB in Quito, Ecuador. He developed the quad 
to combat the effects of corona discharge at high alti­
tudes. The problem at HCJB was that their large Yagi 
was literally destroying itself by melting its own element 
tips. This occurred due to the huge balls of corona it gen­
erated in the thin atmosphere of the high Andes moun­
tains. Moore reasoned correctly that closed loop elements 
would generate less high voltage—and hence less 
corona—than would the high impedances at the ends of 
a half-wave dipole element. 

Fig 1 shows the original version of the two-element 
quad, with a driven element and a parasitic reflector. The 
square loops may be mounted either with the corners lying 
on horizontal and vertical lines, as shown at the left, or 
with two sides horizontal and two vertical (right). The 
feed points shown for these two cases will result in hori­
zontal polarization, which is commonly used. 

Since its inception, there has been controversy 
whether the quad is a better performer than a Yagi. Chap­
ter 11 showed that the three main electrical performance 
parameters of a Yagi are gain, response patterns (front­
to-rear ratio, F/R) and drive impedance/SWR. Proper 
analysis of a quad also involves checking all these 
parameters across the entire frequency range over which 
you intend to use it. Both a quad and a Yagi are classified 
as “parasitic, end-fire arrays.” Modern antenna model­
ing by computer shows that monoband Yagis and quads 
with the same boom lengths and optimized for the same 
performance parameters have gains within about 1 dB of 
each other, with the quad slightly ahead of the Yagi. 

Fig 2 plots the three parameters of gain, front-to-

Fig 1—The basic two-element quad antenna, with 
driven-element loop and reflector loop. The driven 
loops are electrically one wavelength in circumference 
(1/4 wavelength on a side); the reflectors are slightly 
longer. Both configurations shown give horizontal 
polarization. For vertical polarization, the driven 
element should be fed at one of the side corners in the 
arrangement at the left, or at the center of a vertical 
side in the “square” quad at the right. 

Fig 2—Comparison of gain, F/R and SWR over the 14.0 
to 14.35-MHz range for an optimized three-element 
quad and an optimized three-element Yagi, both on 
26-foot booms. The quad exhibits almost 0.5 dB more 
gain for the same boom length, but doesn’t have as 
good a rearward pattern over the whole frequency 
range compared to the Yagi. This is evidenced by the 
F/R curve. The quad’s SWR curve is also not quite as 
flat as the Yagi. The quad’s design emphasizes gain 
more than the other two parameters. 
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rear ratio (F/R) and SWR over the 14.0 to 14.35-MHz 
band for two representative antennas—a monoband three­
element quad and a monoband four-element Yagi. Both 
of these have 26-foot booms and both are optimized for 
the best compromise of gain, F/R and SWR across the 
whole band. 

While the quad in Fig 2 consistently exhibits about 
0.5 dB more gain over the whole band, its F/R pattern 
toward the rear isn’t quite as good as the Yagi’s over that 
span of frequencies. This quad attains a maximum F/R of 
25 dB at 14.1 MHz, but it falls to 17 dB at the bottom end 
of the band and 15 dB at the top. On the other hand, the 
Yagi’s F/R stays consistently above 21 dB across the 
whole 20-meter band. The quad’s SWR rises to just 
under 3:1 at the top end of the band, but stays below 2:1 
from 14.0 to almost 14.3 MHz. The Yagi’s SWR remains 
lower than 1.5:1 over the whole band. 

The reason the Yagi in Fig 2 has more consistent 
responses for gain, F/R and SWR across the whole 20­
meter band is that it has an additional parasitic element, 
giving two additional variables to play with—that is, the 
length of that additional element and the spacing of that 
element from the others on the boom. 

Yagi advocates point out that it is easier to add extra 
elements to a Yagi, given the mechanical complexities of add­
ing another element to a quad. Extra parasitic elements give a 
designer more flexibility to tailor all performance parameters 
over a wide frequency range. Quad designers have histori­
cally opted to optimize strictly for gain and, as stated before, 
they can achieve as much as 1 dB more gain than a Yagi with 
the same length boom. But in so doing, a quad designer typi­
cally has to settle for front-to-rear patterns that are peaked 
over more narrow frequency ranges. The 20-meter quad plots 
in Fig 2 actually represent an even-handed approach, where 
the gain is compromised slightly to obtain a more consistent 
pattern and SWR across the whole band. 

Fig 3 plots gain, F/R and SWR for two 10-meter 
monoband designs: a five-element quad and a five-ele­
ment Yagi, both placed on 26-foot booms. The quad now 
has the same degrees of freedom as the Yagi, and as a 
consequence the pattern and SWR are more consistent 
across the range from 28.0 to 28.8 MHz. The quad’s F/R 
remains above about 18.5 dB from 28.0 to 28.8 MHz. 
Meanwhile, the Yagi maintains an F/R of greater than 
22 dB over the same range, but has almost 0.8 dB less 
gain compared to the quad at the low end of the band, 
eventually catching up at the high end of the band. The 
SWR for the quad is just over 2:1 at the bottom of the 
band, but remains less than 2:1 up to 28.8 MHz. The SWR 
on the Yagi remains less than 1.6:1 over the whole band. 

Fig 4 shows the performance parameters for two 15­
meter monoband designs: a five-element quad and a five­
element Yagi, both on 26-foot booms. The quad is still the 
leader in gain, but has a less optimal rearward pattern and a 
somewhat less flat SWR curve than the Yagi. One thing 
should be noted in Figs 2 through 4. The F/R pattern on the 

Fig 3—Comparison of gain, F/R and SWR over the 28.0 
to 28.8-MHz range for an optimized five-element quad 
and an optimized five-element Yagi, both on 26-foot 
booms. The gain advantage of the quad is about 0.25 dB 
at the low end of the band. The F/R is more peaked in 
frequency for the quad, however, than the Yagi. 

Fig 4—Comparison of gain, F/R and SWR over the 21.0 
to 21.45-MHz range for an optimized 5-element quad 
and optimized 5-element Yagi, both on 26-foot booms. 
The quad enjoys a gain advantage of about 0.5 dB over 
most of the band. Its rearward pattern is not as good as 
the Yagi, which remains higher than 24 dB across the 
whole range, compared to the quad, which remains in 
the 16-dB average range. 

Yagi is largely determined by the response at the 180° point, 
directly in back of the frontal lobe. This point is usually 
referred to when discussing the “front-to-back ratio.” 

The quad on the other hand has what a sailor might 
term “quartering lobes” (referring to the direction back 
towards the “quarterdeck” at the stern of a sailing vessel) 
in the rearward pattern. These quartering lobes are often 
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Fig 5—Comparing the pattern of the 15-meter quad and 
Yagi shown in Fig 4. The quad has a slightly narrower 
frontal beamwidth (it has 0.5 dB more gain than the Yagi), 
but has higher “rear quartering” sidelobes at about 125° 
(with a twin sidelobe, not shown, at 235°). These 
sidelobes limit the worst-case front-to-rear (F/R) to about 
17 dB, while the F/B (at 180°, directly at the back 
of the quad) is more than 24 dB for each antenna. 

worse than the response at 180°, directly in back of the 
main beam. Fig 5 overlays the free-space E-Field 
responses of the 15-meter quad and Yagi together. 
At 21.2 MHz, the quad actually has a front-to-back ratio 
(F/B) of about 24 dB, excellent in anyone’s book. The 
Yagi at 180° has a F/B of about 25 dB, again excellent. 

However, at an azimuth angle of about 125° (and at 
235° azimuth on the other side of the main lobe) the 
quad’s “quartering lobe” is down only some 17 dB, set­
ting the worst-case F/R at 17 dB also. As explained in 
Chapter 11, the reason F/R is more important than just 
the F/B is that on receive signals can come from any 
direction, not just from directly behind the main beam. 

Table 1 lists the dimensions for the three computer­
optimized monoband quads shown in Figs 2, 3 and 4. 

Is a Quad Better at Low Heights than a Yagi? 
Another belief held by some quads enthusiasts is that 

they need not be mounted very high off the ground to give 
excellent DX performance. Quads are somehow supposed 
to be greatly superior to a Yagi at the same height above 
ground. Unfortunately, this is mainly wishful thinking. 

Fig 6 compares the same two 10-meter antennas as 
in Fig 3, but this time with each one mounted on a 50­
foot tower over flat ground, rather than in theoretical free 
space. The quad does indeed have slightly more gain than 
a Yagi with the same boom length, as it has in free space. 
This is evidenced by the very slight compression of the 
quad’s main lobe, but is more obvious when you look at 
the third lobe, which peaks at about 53° elevation. In 
effect, the quad squeezes some energy out of its second 

Table 1 
Dimensions for Optimized Monoband Quads in 
Figs 2, 3 and 4, on 26-Foot Booms 

14.2 MHz 21.2 MHz 28.4 MHz 
Reflector 73′ 9" 49′ 6" 37′ 3" 
R-DE Spacing 17′ 8" 7′ 6′ 4" 
Driven Element 71′ 8" 47′ 6" 35′ 9" 
DE-D1 Spacing 8′ 3" 5′ 5′ 6" 
Director 1 68′ 7" 46′ 8" 34′ 8" 
D1-D2 Spacing — 6′ 8" 6′ 9" 
Director 2 — 46′ 10" 35′ 2" 
D2-D3 Spacing — 7′ 4" 7′ 5" 
Director 3 — 45′ 8" 34′ 2" 
Feed method Direct 50 Ω Direct 50 Ω Direct 50 Ω 

Fig 6—A comparison on 10 meters between an optimized 
five-element quad and an optimized five-element Yagi, 
both mounted 50 feet high over flat ground and both 
employing 26-foot booms. There is no appreciable 
difference in the peak elevation angle for either antenna. 
In other words, a quad does not have an appreciable 
elevation-angle advantage over a Yagi mounted at the 
same boom height. Note that the quad achieves its 
slightly higher gain by taking energy from higher-angle 
lobes and concentrating that energy in the main elevation 
lobe. This is a process that is similar to what happens 
with stacked Yagis. 

and third lobes and adds that to the first lobe. However, 
the difference in gain compared to the Yagi is only 
0.8 dB for this particular quad design at a 9° elevation 
angle. And while it’s true that every dB counts, you can 
also be certain that on the air you wouldn’t be able to tell 
the difference between the two antennas. After all, a 10­
to 20-dB variation in the level signals is pretty common 
because of fading at HF. 

Multiband Quads 
On the other hand, one of the valid reasons quads have 

remained popular over the years is that antenna homebrewers 
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can build multiband quads far more easily they can 
construct multiband Yagis. In effect, all you have to do 
with a quad is add more wire to the existing support arms. 
It’s not quite as simple as that, of course, but the idea of 
ready expandability for other bands is very appealing to 
experimenters. 

Like the Yagi, the quad does suffer from interactions 
between wires of different frequencies, but the degree of 
interaction between bands is usually less for a quad. The 
higher-frequency bands are the ones that often suffer most 
from any interaction, for both Yagis and quads. For 
example, the 10- and 15-meter bands are usually the ones 
affected most by nearby 20-meter wires in a triband quad, 
while the 20-meter elements are not affected by the 10­
or 15-meter elements. 

Modern computer modeling software can help you 
counteract at least some of the interaction by allowing 
you to do virtual “retuning” of the quad on the computer 
screen — rather than clinging precariously to your tower 
fiddling with wires. However, the programs (such as NEC­
2 or EZNEC) that can model three-dimensional wire 
antennas such as quads typically run far more slowly than 
those designed for monoband Yagis (such as YW included 
with this book). This makes optimizing rather tedious, 
but you use the same considerations for tradeoffs between 
gain, pattern (F/R) and SWR over the operating band­
width as you do with monoband Yagis. 

CONSTRUCTING A QUAD 
The parasitic element shown in Fig 1 is tuned in much 

the same way as the parasitic element in a Yagi antenna. 
That is, the parasitic loop is tuned to a lower frequency 
than the driven element when the parasitic is to act as a 
reflector, and to a higher frequency when it is to act as a 
director. Fig 1 shows the parasitic element with an adjust­
able tuning stub, a convenient method of tuning since the 
resonant frequency can be changed simply by changing the 
position of the shorting bar on the stub. In practice, it has 
been found that the length around the loop should be 
approximately 3.5% greater than the self-resonant length 
if the element is a reflector, and about 3.0% shorter than 
the self-resonant length if the parasitic element is a direc­
tor. Approximate formulas for the loop lengths in feet are: 

1008 
Driven Element = 

fMHz 

1045 
Reflector = 

fMHz 

977 
Director = 

fMHz 

These are valid for quad antennas intended for op­
eration below 30 MHz and using uninsulated #14 stranded 
copper wire. At VHF, where the ratio of loop circumfer­
ence to conductor diameter is usually relatively small, the 

circumference must be increased in comparison to the 
wavelength. For example, a one-wavelength loop con­
structed of 1/4-inch tubing for 144 MHz should have a 
circumference about 2% greater than in the above equa­
tion for the driven element. 

Element spacings on the order of 0.14 to 0.2 free­
space wavelengths are generally used. You would 
employ the smaller spacings for antennas with more than 
two elements, where the structural support for elements 
with larger spacings tends to become challenging. The 
feed-point impedances of antennas having element spac­
ings on this order have been found to be in the 40- to 
60-Ω range, so the driven element can be fed directly 
with coaxial cable with only a small mismatch. 

For spacings on the order of 0.25 wavelength (physi­
cally feasible for two elements, or for several elements at 
28 MHz) the impedance more closely approximates the 
impedance of a driven loop alone—that is, 80 to 100 Ω. 
The feed methods described in Chapter 26 can be used, 
just as in the case of the Yagi. 

Making It Sturdy 
The physical sturdiness of a quad is directly propor­

tional to the quality of the material used and the care with 
which it is constructed. The size and type of wire selected 
for use with a quad antenna is important because it will 
determine the capability of the spreaders to withstand high 
winds and ice. One of the more common problems con­
fronting the quad owner is that of broken wires. A solid 
conductor is more apt to break than stranded wire under 
constant flexing conditions. For this reason, stranded cop­
per wire is recommended. For 14-, 21- or 28-MHz 
operation, #14 or #12 stranded wire is a good choice. Sol­
dering of the stranded wire at points where flexing is likely 
to occur should be avoided. 

You may connect the wires to the spreader arms in 
many ways. The simplest method is to drill holes through 
the fiberglass at the appropriate points on the arms and 
route the wires through the holes. Soldering a wire loop 
across the spreader, as shown later, is recommended. 
However, you should take care to prevent solder from 
flowing to the corner point where flexing could break it. 

While a boom diameter of 2 inches is sufficient for 
smaller quads using two or even three elements for 14, 
21 and 28 MHz, when the boom length reaches 20 feet or 
longer a 3-inch diameter boom is highly recommended. 
Wind creates two forces on the boom, vertical and hori­
zontal. The vertical load on the boom can be reduced with 
a guy-wire truss cable. The horizontal forces on the boom 
are more difficult to relieve, so 3-inch diameter tubing is 
desirable. 

Generally speaking, three grades of material can be 
used for quad spreaders. The least expensive material is 
bamboo. Bamboo, however, is also the weakest material 
normally used for quad construction. It has a short life, 
typically only three or four years, and will not withstand 
a harsh climate very well. Also, bamboo is heavy in con­

12-4 Chapter 12 



Chap 12.pmd 8/26/2003, 11:21 AM5

trast to fiberglass, which weighs only about a pound per 
13-foot length. Fiberglass is the most popular type of 
spreader material, and will withstand normal winter cli­
mates. One step beyond the conventional fiberglass arm 
is the pole-vaulting arm. For quads designed to be used 
on 7 MHz, surplus “rejected” pole-vaulting poles are 
highly recommended. Their ability to withstand large 
amounts of bending is very desirable. The cost of these 
poles is high, and they are difficult to obtain. See Chap­
ter 21 for dealers and manufacturers of spreaders. 

Diamond or Square? 
The question of how to orient the spreader arms has 

been raised many times over the years. Should you mount 
the loops in a diamond or a square configuration? Should 
one set of spreaders be horizontal to the earth as shown 
in Fig 1 (right), or should the wire itself be horizontal to 
the ground (spreaders mounted in the fashion of an X) as 
shown in Fig 1 (left)? From the electrical point of view, 
there is not enough difference in performance to worry 
about. 

From the mechanical point of view there is no ques­
tion which version is better. The diamond quad, with the 

associated horizontal and vertical spreader arms, is 
capable of holding an ice load much better than a system 
where no vertical support exists to hold the wire loops 
upright. Put another way, the vertical poles of a diamond 
array, if sufficiently strong, will hold the rest of the sys­
tem erect. When water droplets are accumulating and 
forming into ice, it is very reassuring to see water run­
ning down the wires to a corner and dripping off, rather 
than just sitting there on the wires and freezing. The wires 
of a loop (or several loops, in the case of a multiband 
antenna) help support the horizontal spreaders under a 
load of ice. A square quad will droop severely under heavy 
ice conditions because there is nothing to hold it up 
straight. 

Of course, in climates where icing is not a problem, 
many amateurs point out that they like the aesthetics of 
the square configuration. There are thousands of square­
configuration quads in temperate areas around the world. 

Another consideration will enter into your choice 
of orientation for a quad. You must mount a diamond quad 
somewhat higher on the mast or tower than for an equiva­
lent square array, just to keep the bottom spreader away 
from the tower guys when you rotate the antenna. 

Two Multiband Quads

This section describes two multiband quad designs. 

The first is a large triband 20/15/10-meter quad built on 
a 26-foot boom made of 3-inch irrigation tubing. This 
antenna has three elements on 20 meters, four elements 
on 15 meters, and five elements on 10 meters. Fig 7 shows 
a photograph of the five-element triband quad. 

The second project is a compact two-element triband 
quad on an 8-foot boom that covers 20, 17, 15, 12 and 
10 meters. We call this a “pentaband” quad since it cov­
ers five bands. This antenna uses five concentric wire 
loops mounted on the each of the two sets of spreaders. 
Either antenna may be constructed in a diamond or square 
configuration. 

While the same basic construction techniques are 
employed for both multiband quads, the scale of the larger 
triband antenna makes it a far more ambitious undertak­
ing! The large quad requires a strong tower and a rugged 
rotator. It also requires a fair amount of real estate in 
order to raise the quad to the top of the tower without 
entangling trees or other antennas. 

A FIVE-ELEMENT, 26-FOOT BOOM 
TRIBAND QUAD 

Five sets of element spreaders are used to support the 
three elements used on 14 MHz, four elements on 
21 MHz and five elements on 28-MHz. We chose to use four 
elements on 15 meters in this design (rather than the five we 
could have been employed on this length of boom) because 

the difference in optimized performance wasn’t great enough 
to warrant the extra complexity of using five elements. The 
dimensions are listed in Table 2, and are designed for center 
frequencies of 14.175, 21.2 and 28.4 MHz. 

The spacing between elements has been chosen to 
provide good compromises in performance consistent 
with boom length and mechanical construction. You can 
see that the element spacings for 20 meters are quite dif­
ferent from those for the optimized monoband design. 
This is because the same set of spreaders is used for all 

Fig 7—Photo of the three-band, five-element quad 
antenna. 
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Fig 8—Layout for the three-band, five-element quad, not drawn to scale. See Table 2 for dimensions. 

three bands on three out of the five elements, and the 
higher-frequency bands dictate the spacing because they 
are more critical. 

Each of the parasitic loops is closed (ends soldered 
together) and requires no tuning. Fig 8 shows the physi­
cal layout of the triband quad. Fig 9 plots the computed 
free-space gain, front-to-rear ratio and SWR response 
across the 20-meter band. With only a few degrees of free­
dom in tuning and spacing of the three elements, it is 
impossible to spread the response out to cover the entire 
20-meter band. The compromise design results in a rear­
ward pattern that varies from a worst-case of just under 
10 dB at the high end of the band, to a peak F/R of just 

Table 2

Three-Band Five-Element Quad on 26-Foot Boom


14.15 MHz 21.2 MHz 28.4 MHz 
Reflector 72′ 6" 49′ 4" 36′ 8" 
R-DE Spacing 12′ 12′ 6′ 
Driven Element 71′ 47′ 6" 35′ 4" 
DE-D1 Spacing 14′ 7′ 6′ 
Director 1 68′ 6" 46′ 8" 34′ 8" 
D1-D2 Spacing — 14′ 7′ 
Director 2 — 46′ 5" 34′ 8" 
D2-D3 Spacing — — 7′ 
Director 3 — — 34′ 
Feed method Direct 50 Ω Direct 50 Ω Direct 50 Ω 

under 19 dB at 14.2 MHz, in the phone portion of the band. 
The F/R is about 11 dB at the low end of the band. 

The SWR remains under 3:1 for the entire 20-meter 
band, rising to 2.8:1 at the high end. The feed system for 
this triband quad consists of three separate 50-Ω coax 

Fig 9—Computed performance of the triband, five­
element quad over the 20-meter band. The direct 50-Ω 
feed system holds the SWR below 2.8: 1 across the 
whole band. This could be improved with a gamma­
match system tuned to 14.1 MHz if the builder really 
desires a low SWR. The F/R peaks at 14.1 MHz and 
remains above 10 dB across the whole band. 
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lines, one per driven element, together with a relay switchbox 
mounted to the boom so that a single coax can be used back 
to the operating position. Each feed line uses a ferrite-bead 
balun to control common-mode currents and preserve the 
radiation pattern and each coax going to the switchbox is 
cut to be an electrical three-quarter wavelength on 15 meters. 
This presents a short at the unused driven elements since 
modeling indicated that the 15-meter band is adversely 
affected by the presence of the 20-meter driven element if it 
is left open-circuited. If you use RG-213 coax, the 3/4-λ elec­
trical length of each feed line is 23 feet long at 21.2 MHz. 
This is sufficient physical length to reach each driven ele­
ment from the switchbox. 

Fig 10 shows the free-space response for the 15­
meter band. The rearward response is roughly 15 dB 
across the band. This is a result of the residual interac­
tion between the 20-meter elements on 15 meters, and no 
further tuning could improve the F/R. Note how flat the 
SWR curve is. This SWR characteristic is what gives the 
quad the reputation of being “wideband.” A flat SWR 
curve, however, is not necessarily a good indicator of 
optimal performance for directional antennas like quads 
or Yagis, particularly multiband designs where compro­
mises must be made by physical necessity. 

Fig 11 shows the characteristics of the 10-meter por­
tion of the two-element triband quad. The response 
favors the low-phone band, with the F/R falling to about 
12 dB at the low end of the frequency range and rising to 
just about 23 dB at 28.4 MHz. The SWR curve is once 
again relatively flat across the major portion of the band 
up to 28.8 MHz. 

Construction 
The most obvious problem related to quad antennas 

is the ability to build a structurally sound system. If high 

Fig 10—Computed performance of the triband, five­
element quad over the 15-meter band. There is some 
degree of interaction with the 20-meter elements, 
limiting the worst-case F/R to about 15 dB. The gain and 
SWR curves are relatively flat across the band. 

winds or heavy ice are a normal part of the environment, 
special precautions are necessary if the antenna is to sur­
vive a winter season. Another stumbling block for would­
be quad builders is the installation of a three-dimensional 
system (assuming a Yagi has only two important dimen­
sions) on top of a tower—especially if the tower needs guy 
wires for support. With proper planning, however, many 
of these obstacles can be overcome. For example, a tram 
system may be used. 

Both multiband quad arrays use fiberglass spread­
ers (see Chapter 21 for suppliers). Bamboo is a suitable 
substitute (if economy is of great importance). However, 
the additional weight of the bamboo spreaders over 
fiberglass is an important consideration. A typical 
12-foot bamboo pole weighs about 2 pounds; the fiber­
glass type weighs less than a pound. By multiplying the 
difference times 8 for a two-element array, times 12 for a 
three-element antenna, and so on, it quickly becomes 
apparent that fiberglass is worth the investment if weight 
is an important factor. Properly treated, bamboo has a 
useful life of three or four years, while fiberglass life is 
probably 10 times longer. 

Spreader supports (sometimes called spiders) are 
available from many different manufacturers. If the 
builder is keeping the cost at a minimum, he should con­
sider building his own. The expense is about half that of 
a commercially manufactured equivalent and, according 
to some authorities, the homemade arm supports 
described below are less likely to rotate on the boom as a 
result of wind pressure. 

A 3-foot length of steel angle stock, 1 inch per side, 
is used to interconnect the pairs of spreader arms. The 
steel is drilled at the center to accept a muffler clamp of 
sufficient size to clamp the assembly to the boom. The 
fiberglass is clamped to the steel angle stock with auto-

Fig 11—Computed performance of the triband, five­
element quad over the 10-meter band. The F/R is higher 
than 12 dB across the band from 28.0 to 29.0 MHz, but the 
SWR rises at the top end of the band beyond 2:1. The 
free-space gain is higher than 10 dBi across the band. 
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Fig 12—Details of one of two assemblies for a spreader
frame. The two assemblies are joined back-to-back to
form an X with a muffler clamp mounted at the position
shown.

Fig 13—A method of assembling a corner of the wire
loop of a quad element to the spreader arm.

Fig 14—An alternative method of assembling the wire
of a quad loop to the spreader arm.

Fig 15—Suitable circuit for relay switching of bands for
the three-band quad. A three-wire control cable is
required. K1, K2—any type of relay suitable for RF
switching, coaxial type not required (Potter and
Brumfeld MR11A acceptable; although this type has
double-pole contacts, mechanical arrangements of
most single-pole relays make them unacceptable for
switching of RF).

motive hose clamps, two per pole. Each quad-loop
spreader frame consists of two assemblies of the type
shown in Fig 12.

Connecting the wires to the fiberglass can be done
in a number of different ways. Holes can be drilled at the
proper places on the spreader arms and the wires run
through them. A separate wrap wire should be included

at the entry/exit point to  vent the loop from slipping.
Details are presented in Fig 13. Some amateurs have
experienced cracking of the fiberglass, which might be a
result of drilling holes through the material. However,
this seems to be the exception rather than the rule. The
model described here has no holes in the spreader arms;
the wires are attached to each arm with a few layers of

pre
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Fig 16—The relay box is mounted on the boom near the 
center. Each of the spreader-arm fiberglass poles is 
attached to steel angle stock with hose clamps. 

plastic electrical tape and then wrapped approximately 
20 times in a crisscross fashion with 1/8-inch diameter 
nylon string, followed by more electrical tape for UV pro­
tection, as shown in Fig 14. 

The wire loops are left open at the bottom of each 
driven element where the feed-line coaxes are attached. 
All of the parasitic elements are continuous loops of wire; 
the solder joint is at the base of the diamond. 

Although you could run three separate coax cables 
down to the shack, we suggest that you install a relay box 
at the center of the boom. A three-wire control system may 
be used to apply power to the proper relay for changing 
bands. The circuit diagram of a typical configuration is 
presented in Fig 15 and its installation is shown in Fig 16. 

Every effort must be placed upon proper construc­
tion if you want to have freedom from mechanical prob­
lems. Hardware must be secure or vibration created by 
the wind may cause separation of assemblies. Solder joints 
should be clamped in place to keep them from flexing, 
which might fracture a connection point. 

A TWO-ELEMENT, 8-FOOT BOOM 
PENTABAND QUAD 

This two-element pentaband (20/17/15/12/10-meter) 
quad uses the same construction techniques as its big 
brother above. Since only two elements are used, the boom 
can be less robust for this antenna, at 2 inches diameter 
rather than 3 inches. Those who like really rugged anten­
nas can still use the 3-inch diameter boom, of course. 

Table 3  lists the element dimensions for the 
pentaband quad. The following plots show the perfor­
mance for each of the five bands covered. The feed sys­
tem for the pentaband quad uses five, direct 50-Ω coaxes, 
one to each driven element. These five coaxes are cut to 
be 3/4-λ electrically on 10 meters (17 feet, 2 inches for 
RG-213 at 28.4 MHz). In this design the 10-meter band 
is the one most affected by the presence of the other driven 
elements if they are left unshorted. The 3/4-λ lines open­
circuited at the switchbox are long enough physically to 
reach all elements from a centrally mounted switchbox. 
This length assumes that the switchbox open-circuits the 
unused coaxes. If the switchbox short-circuits unused 
coaxes (as several commercial switchboxes do), then use 
1/2-λ long lines to feed all five driven elements (11 feet, 
5 inches for RG-213 at 28.4 MHz). 

Fig 17—Computed performance of the pentaband two­
element quad on 20 meters. With the simple direct-feed 
system, the SWR rises to about 2.3:1 at the low end of 
the band. A gamma match can bring the SWR down to 
1:1 at 14.1 MHz, if desired. 

Table 3

Five-Band Two-Element Quad on 8-Foot Boom


14.2 MHz 18.1 MHz 21 MHz 24.9 MHz 28.4 MHz 
Reflector 72′ 4" 56′ 4" 48′ 6" 40′ 111/4" 37′  51/2" 
R-DE Spacing 8′ 8′ 8′ 8′ 8′ 
Driven Element 69′ 101/2" 54′ 101/2" 46′ 7" 39′ 101/2" 34′ 6" 

Quad Arrays 12-9 
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The SWR curves do not necessarily go down to 1:1 
because of this simple, direct feed system. If anyone is 
bothered by this, of course they can always implement 
individual matching systems, such as gamma matches. 
Most amateurs would agree that such a degree of com­
plexity is not warranted. The worst-case SWR is less than 
2.3:1 on each band, even with direct feed on 20 meters. 
With typical lengths of coaxial feed line from the shack 
to the switchbox at the antenna, say 100 feet of RG-213, 
the SWR at the transmitter would be less than 2.0:1 on all 
bands due to losses in the feed line. 

Fig 17 shows the computed responses for the 
pentaband quad over the 20-meter band. With only two 

Fig 18—Computed performance of the pentaband two­
element quad on 17 meters. There is some interaction 
with the other elements, but overall the performance is 
satisfactory on this band. 

Fig 19—Computed performance of the pentaband two­
element quad on 15 meters. The performance is 
acceptable across the whole band. 

degrees of freedom (spacing and element tuning) there is 
not much that can be done to spread the response out over 
the entire 20-meter band. Nonetheless, the performance 
over the band is still pretty reasonable for an antenna this 
small. The F/R pattern peaks at 19 dB at 14.1 MHz and 
falls to about 10 dB at either end of the band. The free­
space gain varies from about 7.5 dBi to just above 6 dBi, 
comparable to a short-boom three-element Yagi. The 
SWR curve remains below 2.3:1 across the band. If you 
were to employ a gamma match tuned at 14.1 MHz, you 
could limit the peak SWR to less than 2.0:1, and this 
would still occur at 14.0 MHz. 

On 17 meters, Fig 18 shows that the other elements 

Fig 20—Computed performance of the pentaband two­
element quad on 12 meters. 

Fig 21—Computed performance of the pentaband two­
element quad on 10 meters. The SWR curve is slightly 
above the target 2:1 at the low end of the band and 
rises to about 2.2:1 at 28.8 MHz. This unlikely to be a 
problem, even with rigs with automatic power-reduction 
due to SWR, since the SWR at the input of a typical 
coax feed line will be lower than that at the antenna due 
to losses in the line. 

12-10 Chapter 12 
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are affecting 18 MHz, even with element-length optimiza­
tion. Careful examination of the current induced on the 
other elements shows that the 20-meter driven element is 
interacting on 18 MHz, deteriorating the pattern and gain 
slightly. Even still, the performance on 17 meters is rea­
sonable, especially for a five-band quad on an 8-foot boom. 

On 15 meters, the interactions seems to have been 
contained, as Fig 19 demonstrates. The F/R peaks at 
21.1 MHz, at 19 dB and remains better than 12 dB past the 
top of the band. The SWR curve is low across the whole 
band. 

On 12 meters, the interaction between bands is mi­
nor, leading to the good results shown in Fig 20. The 
SWR change across this band is quite flat, which isn’t 
surprising given the narrow bandwidth of the 12-meter 
band. 

On 10 meters, the interaction seems to have been 
tamed well by computer-tuning of the elements. The F/R 
remains higher than about 14 dB from 28 to 29 MHz. 
The SWR remains below 2.2:1 up to about 28.8 MHz, 
while the gain is relatively flat across the band at more 
than 7.2 dBi in free space. See Fig 21. 

Overall, this pentaband quad is physically compact 
and yet it provides good performance across all five bands. 
It is competitive with commercial Log Periodic Dipole 

Array (LPDA) designs and triband Yagi designs that 
employ longer booms. 
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