

Outline

- HFR operating principles
- Site description and quality assessment
- Spectral tour of observations
 - Low frequency currents
 - Near inertial currents island trapped waves?
 - Tides and comparison with existing models
 - Samoan and Chilean tsunami
- Conclusions
- Questions

Operating Principle

Backscattered signal is doppler shifted by wave speed and radial current

HFR Deployment Coverage and Environmental Setting

Quality Assessment – Shipboard Beamforming Calibration

Quality Assessment

- Cross Correlation between sites
- Observed and Theoretical Beam Forming during ship calibration (by Tyson Hilmer)

Empirical Beamforming of Rx Array

Nant = 14, Window: Hamming

Incidence Angle (degrees)

Incidence Angle (degrees)

Theoretical Beamforming of Rx Array

Nant = 14, Window: Hamming

Spectral tour of observations

Low Frequency - Radial Currents (cm/s)

Mesoscale Eddy Energy

Spatial Spectrum

Previous HFR deployments: Chavanne

Assume sub-inertial currents are geostrophic and non-divergent

Enforce no-flow through the coast as a boundary condition, and require non-divergence at all grid cells

$$\eta = \frac{f}{g} \int_{\theta_0}^{\theta} r u_r d\theta$$

$$u_{\theta} = \frac{g}{f} \frac{\partial \eta}{\partial r}$$

Chavanne et al. 2010

Inferred Vector Currents

Color scale is geostrophic height (cm)

Importance of Geostrophy?

Spatial Averages

30 Day Spatially Averaged Current (cm/s)

Wind Driven/Gyre Scale Currents (cm/s)

Velocity Gradient Tensor

•Vorticity – Pure Rotation

•Symmetric Divergence

Non-Divergent Strain

Divergence = 0

Vorticity (ζ /f)

Strain (1/f)

Applicability to CG missions

Low frequency wrap-up

- Seasonal inversion of flow
- Mesoscale energy
- By assuming non-divergence, vectors were inferred
- Inferred vectors reveal
 - jet-like flow through Ka'iwi Channel
 - persistent cyclonic flow near Penguin Bank
 - elevated areas of strain/vorticity along steep ridges

Spectral tour of observations

Coherence Function - Phase Spectra Eigenmodes of Band Passed HFR with Honolulu Sea Level

Broadening of the Inertial Peak

ITW wrap-up

- Gravest mode ITW very near inertial frequency
- Coherence between HFR and SL record suggest ITW
- Smearing of inertial peak due to local vorticity wider than f-ITW
- Longer records and multiple radars would allow spatial lagged-correlation and infer propagation of ITW

Spectral tour of observations

Tides

ROMS modeled M2 Tidal Ellipses

Model Descriptions

	Version	Δχ	Δz	Integration Time	Stratification	Forcing	Data Assimilation
РОМ	Carter et al. 2008	~1 km	61 terrain following σ-levels	18 – M2 cycles (harmonic fit of last 6 cycles)	HOT 10 year mean	M2 barotropic velocity and elevation	N/A
PEZ-HAT	Zaron et al. 2009	2 km	60 z-levels evenly spaced	14 – M2 cycles (harmonic fit of last 3 cycles)	HOT 2 month mean during HOME HFR observations	Normal component of M2 transport	HOME HFR tidal harmonics
ROMS	Powell (HIOG)	~1.2 km	30 terrain following S-levels	T-tide harmonic analysis of 3 months (September – December '09)	Available data	Tide elevation and other available satellite data	WRF atmospheric model

M2 Phase (GMT)

M2 Amplitude (m/s)

Spatially Averaged Power Spectra for Tidal Frequencies

Tide Wrap-Up

- General agreement between tidal observations and models
- Significant incoherent tide may corresponds to internal tidal beams emanating from generation sites
- Apparent tidal beams appear to spatially align with similar analysis during HOME

Spectral tour of observations

Tsunami observation

Expected currents from tsunami

		Open Ocean	Expected Current at
	Open Ocean Period	Amplitude	Penguin Bank
Samoan	~10 min	~ 15 cm	~ 5 cm/s
Chilean	~10 min	35 cm	~12 cm/s

Shorter Averaging Time = Decreased Precision

High-passed complex demodulation

Tsunami wrap-up

- Predicted expected currents
- Small magnitude of events necessitates creative analysis – subsampling and averaging
- Samoan event not detected with analysis techniques employed
- Processing of Chilean event pending

Conclusions

- Low frequency radial data used to infer vector currents
 - Jet-like flow through Ka'iwi Channel seasonal inversion
 - Enhanced vorticity and strain along perimeter
- Tidal observations in one dimension explain large portion of deterministic process
 - Incoherent tidal energy
- ITW & small tsunamis difficult to detect
- Future Work:
 - Validate low freq assumptions 2-site vectors and drifting buoys
 - Examine longer multiple-radars records for ITW
 - Extend tidal analysis to future sites to obtain rotary structure
 - Refine tsunami analysis

Acknowledgments and Mahalo

- UH
 - Pierre Flament, Glenn Carter, Brian Powell
 - RADLAB and other field work help
 - Classmates and teachers
 - Support Staff
- CG
 - Marine Science Program
 - Former shipmates
- Friends
- Family

