Observations of Surface Currents in Panay Strait, Philippines

Charina Lyn Amedo-Repollo

Ph.D. Candidate
Department of Oceanography
School of Ocean and Earth Sciences
University of Hawai'i at Manoa

Committee Members:
Pierre Flament, Chairperson
Mark Merrifield
Glenn Carter
Francois Ascani
Camilo Mora

Outline

Introduction

Environmental and instrumental setting

Low frequency flow in Panay Strait

- Surface and subsurface low
- Coastal jet and cyclonic eddy
- Onset and growth of cyclonic eddy
- Influence of eddy on biology
- Conclusions

Introduction

Philippine Straits Dynamics Experiment(PhilEx-ONR)

Environmental and instrumental setting

Philippine Straits Dynamics Experiment(PhilEx-ONR)

Mindoro-Panay Strait: a branch of Indonesian Throughflow

modeled wind from COAMPS and satellite images of wind

Wind stress and curl QuikSCAT

Situated within the strong influence of the Asian monsoon wind

Wind stress and curl QuikSCAT

Pronounced seasonal cycle

- NE monsoon, positive wind stress curl in the lee of Panay Island
- absent during SW monsoon

Local wind

- Observed and satellite-derived winds well-correlated
- Persistent northeasterly wind Oct April
- Variable southwesterly wind May Sep
- Well-defined transition periods, October and April

Low frequency flow in Panay Strait

- characterize the dominant surface and subsurface flows
- assess the wind contribution on the onset and growth of cyclonic eddy
- describe the influence of eddy on biology

Data

Low-frequency time series obtained by

- removing the tides (t-tide)
- 6-day running median

Surface flow (HFDR)

- coastal jet northward alongshore flow from the coast to the center of the eddy
- eddy southward return flow from the center of the eddy to the west

. Coastal jet and cyclonic eddy

- coastal jet is permanent
- cyclonic eddy is distinctly seasonal, NE monsoon
- well-defined transition periods, October and April
- intermittent variation of coastal jet concurrent with the eddy formation

- coastal jet stronger and variable during NE monsoon
- reinforced and shift by the eddy

• Where is the Indonesian Throughflow?

- move water from South China Sea southwest to Sulu Sea

Vertical distribution of transport per unit depth (Sv m⁻¹) to Panay sill depth

 southwestward Indonesian Throughflow (ITF) is subsurface, under locally forced northward coastal jet

Onset and growth of cyclonic eddy

High resolution COAMPS wind (9km): mean Feb-Mar 2009

Envisat SAR Surface wind (Mar. 7, 2009)

- wind jet in between islands and a calm lee
- positive curl in the lee of Panay

• Ekman pumping velocity, W_F

$$w_E = w(-H_E) = \frac{curl\tau}{\rho f}$$

 H_{E} - Ekman depth

τ - Wind stress

ρ - Density

f - Coriolis parameter

 positive Ekman pumping velocity indicates divergent Ekman transport

COAMPS wind (9km x 9km)

QuikSCAT wind (25km x 25km) - too low resolution

Surface current and divergence: Feb-Mar 2009

assuming:

- divergence entirely wind-driven
- divergence confined to Ekman/mixed layer

then

$$\operatorname{div} \vec{u} = \delta = \frac{w_E}{H_E}$$

 $div \vec{u}$ - divergence, (HFDR)

 W_E - Ekman pumping velocity, (COAMPS)

 H_F - Ekman depth, best fit = 32m

divergent Ekman transport induce upwelling

Signature of cyclonic eddy

- divergence and upwelling result in doming
- sets up pressure gradient
- geostrophic eddy spins-up

Surface current and vorticity: Feb-Mar 2009

Wind stress curl induces divergence that generates positive vorticity

Time series

Time integral

Cumulative effect of wind stress curl generates divergence, permanently lifting the thermocline and increases vorticity

$$\int_0^L W_E$$
 (COAMPS) W_E - Ekman pumping velocity

$$H_{\rm E} \int_{1}^{T} \delta$$
 (HFDR) $H_{\rm E}$ – Ekman depth, best fit = 32 m

$$-- H_g$$
 (HFDR) H_g – thermocline height

$$H_G = \frac{\zeta f L_G^2}{g'}$$

- vorticity

- Coriolis parameter

 $L_{\rm G}$ - radius the eddy, best fit=100km

g' - reduced gravity

Influence on Biology

two competing forcing, doming and enhanced vertical mixing

doming

- low chl in the mixed layer consumption
- high chl at subsurface

shallow shelf

- high chl on the upper 40m
- organisms sink and decay in shallow shelf
- enhanced vertical mixing reached the bottom
- less stratification in the water column
- brings nutrient back to the surface

7-year monthly mean distributions of chlorophyll concentration (mg/m³) in Sulu Sea

an obvious increase in chlorophyll concentrations in December–March over Cuyo shelf

Conclusions

- Conceptual diagram showing Ekman pumping in the lee of islands
 - 1. wind intensifies between islands
 - 2. wind stress variations form positive wind stress curl in the lee of Panay
 - 3. induces divergent surface currents
 - 4. which in turn uplift thermocline
 - 5. pressure gradient spins-up eddy in geostrophic balance

robust mechanism of cumulative wind stress curl to eddy kinetic energy

Acknowledgement

Radio Oceanography Laboratory

Thank you!

- · Pierre Flament, adviser
- Committee members: Mark Merrifield, Glenn Carter
 Francois Ascani and Camilo Mora
- · Cesar Villanoy and Laura David, M.Sc. adviser and co-adviser

The Radio Oceanography Team

The Marine Science Institute Team

- Landowners and local people of Pandan, Laua—an and Tobias Fornier
- · Local government units of the Province of Antique
- · Volunteers

Thank you!

- · Oceanography office: Kristin, Catalpa, etc
- Oceanography Batch Fallon: Victoria, Saulo, Sherril, Tina, Eunjun, Pavica, Max, Rebecca, Patt, etc.,
- · Professors and fellow graduate students
- · Victoria, Lindsey and Alma
- · Benedicte Dousset
- · Eva Washburn-Repollo and Curtis Washburn
- · UH Filipino graduate students and friends

Thank you!

Questions?

Chlorophyll concentration merged 7-day composite image

Dynamical analysis of the cyclonic eddy

Surface Vorticity Balance

$$\frac{D(f+\zeta)}{Dt} + (f+\zeta)\delta = R$$

Rate of change of vorticity following the fluid motion

Stretching (divergence term)

Residual (noise + wind forcing)

Wind stress curl forcing

$$R_{w} = \frac{curl\tau}{\rho H_{E}}$$

 ρ – 1025kgm⁻³, density of seawater H_E – 32m, Ekman depth

Snapshots of terms

Evolution of vorticity dominated by residual term which corresponds to wind stress curl forcing + noise -----> need to average spatially